go to top scroll for more

Projects


Projects: Projects for Investigator
Reference Number EP/W005042/1
Title Dispersion Strengthened Magnesium Alloys - Solidification of Nanocolloids
Status Started
Energy Categories Energy Efficiency(Transport) 20%;
Not Energy Related 80%;
Research Types Basic and strategic applied research 100%
Science and Technology Fields PHYSICAL SCIENCES AND MATHEMATICS (Metallurgy and Materials) 20%;
ENGINEERING AND TECHNOLOGY (Mechanical, Aeronautical and Manufacturing Engineering) 80%;
UKERC Cross Cutting Characterisation Not Cross-cutting 100%
Principal Investigator Dr N Hari-Babu
No email address given
Ctr for Advanced Solidification Tech
Brunel University
Award Type Standard
Funding Source EPSRC
Start Date 01 April 2022
End Date 31 March 2025
Duration 36 months
Total Grant Value £757,017
Industrial Sectors No relevance to Underpinning Sectors
Region London
Programme NC : Engineering
 
Investigators Principal Investigator Dr N Hari-Babu , Ctr for Advanced Solidification Tech, Brunel University (99.999%)
  Other Investigator Professor H Assadi , Inst of Materials & Manufacturing: BCAS, Brunel University (0.001%)
  Industrial Collaborator Project Contact , Toyota Motor Europe, Belgium (0.000%)
Project Contact , Alloyed Limited (0.000%)
Project Contact , Magontec Group (0.000%)
Project Contact , Shiloh Industries (0.000%)
Project Contact , Dummy Organisation (0.000%)
Web Site
Objectives
Abstract Vehicle lightweighting represents a vital strand of an integrated national approach to transport decarbonisation. There is a general agreement that the CO2 emissions from cars needs to be cut by at least 50% to prevent the well-to-wheels carbon emission from the world car fleet rising above 7bn tonnes rather than the more sustainable 4bn tonnes by 2050. The UK Government has set an even higher target of a 60% reduction in transport sector CO2 emissions by 2030. Implementation of lightweighting across all classes of vehicles plays an important role in achieving this target.Magnesium (Mg), as a lightest structural metal combined with superior damping capacity, has tremendous potential in achieving lightweighting in vehicles with improved noise, vibration and harshness performance. Recent Mg market research suggests that the global Mg alloys market will increase from £1 billion in 2018 to £2.8 billion by 2026, at a CAGR of ~12.7% between 2019 and 2026 which is expected to be driven by demand for Mg alloys from the automotive & transportation applications due to fuel efficiency and emission regulations. The automotive industry is aiming to increase Mg content from 8.6kg/car in 2017 to 45kg/car by 2030. Among variety of Mg alloys, aluminium containing Mg (Mg-Al) alloys are being used in automotive sector due to their competitive cost. However, their widespread use in vehicle is hindered by their lower strength. To help realise this growth and to meet the stringent design and safety criteria for lightweighting, it is necessary to enhance the strength of existing cost-effective Mg-Al alloys significantly.The addition of rare-earth (RE) elements and noble metals in magnesium has been successfully utilised to achieve a significant improvement in strength. The alloys that have high RE content exhibit improved strength that meets lightweight design requirement. However, due to the resource scarcity and high cost, the alloys containing RE elements are impractical for their mass structural applications in automotive sector. The role of precipitation hardening in Mg alloys could be fulfilled by ex-situ phase particles, if they are dispersed within the Mg matrix rather than segregated at the grain boundaries. Substantiated by the proof-of-concept study, the proposed research programme aims to develop high strength, cost effective dispersion strengthened magnesium (DSM) alloys. It also investigates the criteria for the stability of nanocolloids, solidification behaviour and establishes process maps suitable for manufacturing DSM alloys using practical casting processes.Technologically, the DSM alloys represent a step change in the manufacturing technology to produce lightweight automotive components. If certain Al and steel are replaced with DSM alloys, the expected weight saving would be significant. In the longer term, it will lead to a significant reduction in CO2 emissions and offer sizable fuel savings. The industrial partners, comprising a materials supplier, component producers, alloy designer and an end user are an added value and help to accelerate the knowledge transfer activity from academia to industry.
Publications (none)
Final Report (none)
Added to Database 14/07/22